sin23°+sin27° dapat ditulis menjadi ....
2sin50°cos4°
2sin25°cos2°
2sin23°sin27°
2cos23°cos27°
2cos50°cos4°
Rumus umum jumlah sinus adalah
sinα+sinβ=2sin12(α+β)cos12(α−β)\sin\alpha+\sin\beta=2\sin\frac{1}{2}\left(\alpha+\beta\right)\cos\frac{1}{2}\left(\alpha-\beta\right)sinα+sinβ=2sin21(α+β)cos21(α−β)
Dengan demikian,
sin23°+sin27°=2sin12(23°+27°)cos12(23°−27°)\sin23\degree+\sin27\degree=2\sin\frac{1}{2}\left(23\degree+27\degree\right)\cos\frac{1}{2}\left(23\degree-27\degree\right)sin23°+sin27°=2sin21(23°+27°)cos21(23°−27°)
=2sin12(50°)cos12(−4°)=2\sin\frac{1}{2}\left(50\degree\right)\cos\frac{1}{2}\left(-4\degree\right)=2sin21(50°)cos21(−4°)
=2sin25°cos(−2°)=2\sin25\degree\cos\left(-2\degree\right)=2sin25°cos(−2°)
Ingat hubungan cos(−θ)=cosθ\cos\left(-\theta\right)=\cos\thetacos(−θ)=cosθ sehingga
=2sin25°cos2°=2\sin25\degree\cos2\degree=2sin25°cos2°