Diketahui suatu fungsi HHH yang dinyatakan sebagai H(x)=[f(x)]nH\left(x\right)=\left[f\left(x\right)\right]^nH(x)=[f(x)]n di mana fff dapat didiferensialkan di xxx. Turunan pertama dari fungsi HHH adalah ....
H′(x)=1n+1[f(x)]n+1H'\left(x\right)=\frac{1}{n+1}\left[f\left(x\right)\right]^{n+1}H′(x)=n+11[f(x)]n+1
H′(x)=(n+1)[f(x)]n+1H'\left(x\right)=\left(n+1\right)\left[f\left(x\right)\right]^{n+1}H′(x)=(n+1)[f(x)]n+1
H′(x)=(n−1)[f(x)]n−1H'\left(x\right)=\left(n-1\right)\left[f\left(x\right)\right]^{n-1}H′(x)=(n−1)[f(x)]n−1
H′(x)=n[f′(x)]n−1. f(x)H'\left(x\right)=n\left[f'\left(x\right)\right]^{n-1}.\ f\left(x\right)H′(x)=n[f′(x)]n−1. f(x)
H′(x)=n[f(x)]n−1 . f′(x)H'\left(x\right)=n\left[f\left(x\right)\right]^{n-1}\ .\ f'\left(x\right)H′(x)=n[f(x)]n−1 . f′(x)