Misalkan u=2x6−3x, maka du=12x5−3dx ⇔dx=12x5−3du
Sehingga menjadi:
∫(4x5−1)2x6−3x dx=∫(2x6−3x)21 (4x5−1)dx
=∫u21 (4x5−1)12x5−3du
=∫u21 (4x5−1)3(4x5−1)du
=∫u21 3du
=31∫u21 du, untuk f(x)=axn, n=−1 maka ∫axndx=n+1axn+1+C
=31(21+11u21+1)+C
=31(21+221u21+22)+C
=31(231u23)+C
=31(32u23)+C
=92(u22)(u21)+C
=92uu+C
=92(2x6−3x)2x6−3x+C
Jadi, hasil integral substitusi tersebut adalah 92(2x6−3x)2x6−3x+C